

B'MOJO: Hybrid State Space Realizations of Foundation Models with Eidetic and Fading Memory

They who forget the pasta are bound to reheat it.

Luca Zancato @ AWS AI Labs

ASAP Seminar | 03-12-2025

Memory for sequence models

Processing long sequences: Modern long context models have nominal support for sequences of length 128k-1M tokens.

API PROVIDER 1	MODEL 1	CONTEXT WINDOW	ARTIFICIAL ANA
(S) OpenAl	🕼 o3-mini (high)	200k	66
teepseek	😒 DeepSeek R1	64k	60
ANTHROP\C	A Claude 3.7 Sonnet Thinking	200k	57
(S) OpenAl	စာ o1-mini	128k	54
Google	Gemini 2.0 Pro Experimental (Al Studio)	2m	49
Google	G emini 2.0 Flash Vertex	1m	48

Source: https://huggingface.co/spaces/ArtificialAnalysis/LLM-Performance-Leaderboard

Reasoning: Better memory means better exploration/ more consistent reasoning traces.

Claude Plays Pokemon - Claude Sonnet 3.7 has been stuck in

Memory realizations for sequence models

State: Function of the past that makes the future conditionally independent of the past $P(u_{t+1} | x_t) = P(u_{t+1} | u_{-\infty}^t)$

Easier said than done! We typically don't know the complexity of the data generation mechanism at the outset.

Benefit of better memory/state

Benefits for long context

Better memory → More effective and cheaper long contexts → Reduce reliance on ad-hoc "context editing/ cleaning" heuristics

Benefits for Reasoning

Idea: On <u>verifiable domains</u> we know we can filter Best-of-N and learn to prefer successful generations.

DeepSeek-AlTeam, "DeepSeek-RI", 2025

Figure 2 | AIME accuracy of DeepSeek-R1-Zero during training. For each question, we sample 16 responses and calculate the overall average accuracy to ensure a stable evaluation.

Benefit of better memory/state

Benefits for long context

Better memory \rightarrow More effective and cheaper long contexts \rightarrow Reduce reliance on ad-hoc "context editing/ cleaning" heuristics

Benefits for Reasoning

Idea: On <u>verifiable domains</u> we know we can filter Best-of-N and learn to prefer successful generations.

Cons: Throw spaghetti on the wall an hope they stick. Computationally VERY inefficient.

Better memory \rightarrow Can increase "N" in Best-of-N

 \rightarrow More scalable inference time compute

Sequence Length

B'MOJO: Hybrid State Space Realizations of Foundation Models with Eidetic and Fading Memory

Luca Zancato^{*} Arjun Seshadri

Benjamin Bowman

Matthew Trager

We describe a family of architectures to support transductive inference by allowing memory to grow to a finite but a-priori unknown bound while making efficient use of finite resources for inference. Current architectures use such resources to represent data either eidetically over a finite span ("context" in Transformers), or fading over an infinite span (in State Space Models, or SSMs). Recent hybrid architectures have combined eidetic and fading memory, but with limitations that do not allow the designer or the learning process to seamlessly modulate the two, nor to extend the eidetic memory span. We leverage ideas from Stochastic

Jul 2024 $\mathbf{\infty}$ 5 S aws

Yonatan Dukler Aditya Golatkar Yantao Shen

Alessandro Achille Stefano Soatto

AWS AI Labs

Abstract

How to build the model's memory? What to keep? What to discard? \rightarrow Realization Theory

Eidetic vs Fading Memory

I. Attention: <u>Perfect recall</u>, good long context performance, high compute

2. SSMs: Low recall, <u>fading memory</u>, low cost

[1] R. Waleffe et al., "An Empirical Study of Mamba-based Language Models"

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

B'MOJO's key ideas

B'MOJO's Associative Recall

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Stochastic Realization Problem

Idea: Find a dynamical model Σ and its state such that it generates a sequence of observations u_1^t and future continuations.

Problem: Even restricting to LTI systems there exist infinitely many realizations of given measurements u_1^t

Thm: Any given data process has not a unique realization, but an equivalence class of models that realize it.

However, Canonical Realizations are representative of each equivalence class! There are many canonical forms: Observable, Controllable, Minimal, Balanced...

$$\begin{cases} \Sigma_1 \equiv \Sigma_2 \\ \Sigma_1 \neq \Sigma_3 \\ \Sigma_1 \neq \Sigma_4 \end{cases}$$

Canonical Realizations

Controllable Canonical From

$$A = \begin{bmatrix} 0 & 1 & & \\ & \ddots & & \\ & & & 1 \\ a_0 & a_1 & \dots & a_{n-1} \end{bmatrix} \qquad B = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \qquad C = [c_0, c_1, \dots, c_{n-1}]$$

Both have poor numerical properties and are not necessarily minimal (least # of FLOPs).

Minimal Canonical Form (smallest possible state) Obtained by dropping the non-controllable and non-observable subspace.

Balanced Canonical Form

Obtained by equalizing the energy required to control and observe the state. aws

$$\Sigma = \begin{cases} x_{t+1} = Ax_t + Bu_t \\ y_t = Cx_t \end{cases}$$

Observable Canonical From

$$A = \begin{bmatrix} 0 & & a_0 \\ 1 & & a_1 \\ & \ddots & & \\ & & 1 & a_{n-1} \end{bmatrix} \qquad B = \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n-1} \end{bmatrix} \qquad C = [0, \dots, 0, 1]$$

Canonical Realizations

Nilpotent Model (in Controllable Canonical Form)

$$A = \begin{bmatrix} 0 & 1 & & \\ & \ddots & \\ & & & 1 \\ 0 & 0 & \dots & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \qquad C = \begin{bmatrix} c_0, c_1, \dots, c_{n-1} \end{bmatrix}$$

Using an input dependent non-linear readout function (softmax) we get **Causal Attention**

Fading Memory Model

$$A = \begin{bmatrix} a_0 & & & \\ & \ddots & & \\ & & a_{n-2} & \\ & & & a_{n-1} \end{bmatrix} \qquad B = \begin{bmatrix} b_0 \\ \vdots \\ b_{n-2} \\ b_{n-1} \end{bmatrix} \qquad C = [c_0, c_1, \dots$$

Thm: Differently from Fading memory systems, Nilpotent systems are not diagonalizable.

All poles in A are equal to zero.

 $[., c_{n-1}]$

Poles of A < 1

Modern Realizations (Attention/SSMs)

Causal Attention

$$\begin{cases} x_{t+1} = A_{ATT}x_t + B_{ATT}u_t \\ y_t = \operatorname{softmax}(u_t, x_t) \end{cases}$$

Attention only has **short term eidetic memory** that is deadbeat in N steps.

SSMs (e.g Mamba or Linear Attention variants)

$$\begin{cases} x_{t+1} = \bar{A}(u_t)x_t + \bar{B}(u_t)u_t \\ y_t = \bar{C}(u_t)x_t \end{cases} \quad \bar{A}(u_t) = \begin{bmatrix} \bar{a}_0(u_t) & & & \\ & \ddots & & \\ & & \bar{a}_{n-2}(u_t) \\ & & & \bar{a}_{n-1}(u_t) \end{bmatrix} \bar{B}(u_t) = \begin{bmatrix} \bar{b}_0(u_t) \\ \vdots \\ \bar{b}_{n-2}(u_t) \\ \bar{b}_{n-1}(u_t) \end{bmatrix} \bar{C}(u_t) = [c_0(u_t), c_1(u_t), \dots, c_n(u_n)] \bar{C}(u_n) = [c_0(u_n), c_1(u_n), \dots, c_n(u_n)]$$

Only has fading memory with decoupled dynamics (cannot retain information indefinitely).

$$A_{ATT} = \begin{bmatrix} 0 & I & & \\ & \ddots & \\ & & & I \\ & & & 0 \end{bmatrix}; \quad B_{ATT} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ \begin{bmatrix} k \\ v_t \end{bmatrix} \end{bmatrix}$$

B'MOJO's realization

Idea: B'MOJO layers generalize Nilpotent dynamics (of ARTransformers) and fading diagonal dynamics (of Mamba/Linear Attention).

B'MOJO

$$\begin{cases} x_{t+1} = A(u_t)x_t + B(u_t)u_t \\ y_t = \operatorname{softmax}(u_t, x_t) \end{cases}$$

Note: B'MOJO has a non-diagonal input dependent dynamics that realizes any dynamical layer (similar to the *Hammerstein-Wiener* model in the Control literature).

$$A(u_t) = \begin{bmatrix} 0 & 1 & & \\ & \ddots & & \\ & & & 1 \\ a_0(u_t) & a_1(u_t) & \dots & a_{n-1}(u_t) \end{bmatrix} \qquad B = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ b(u_t) \end{bmatrix}$$

B'MOJO generalizes Transformers

Idea: B'MOJO layers generalize Nilpotent dynamics (of AR Transformers) and fading diagonal dynamics (of Mamba/Linear Attention).

$$A(u_t) = \begin{bmatrix} 0 & 1 & & \\ & \ddots & & \\ & & & 1 \\ a_0(u_t) & a_1(u_t) & \dots & a_{n-1}(u_t) \end{bmatrix} \qquad B = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ b(u_t) \end{bmatrix}$$

$$A_{ATT}z_{t} + B_{ATT}(u_{t}) \qquad A_{ATT} = \begin{bmatrix} 0 & I & & \\ & \ddots & \\ & & I \\ 0 & 0 & \dots & 0 \end{bmatrix}; \quad B_{ATT} = \begin{bmatrix} 0 & I & & \\ 0 & \vdots & & \\ 0 & & & I \\ 0 & 0 & \dots & 0 \end{bmatrix};$$

Row set to zero

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

B'MOJO is strictly more expressive than SSMs

Idea: B'MOJO layers generalize Nilpotent dynamics (of ARTransformers) and fading diagonal dynamics (of Mamba/Linear Attention).

$$A(u_{t}) = \begin{bmatrix} 0 & 1 & & \\ & \ddots & \\ a_{0}(u_{t}) & a_{1}(u_{t}) & \dots & a_{n-1}(u_{t}) \end{bmatrix} \qquad B = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ b(u_{t}) \end{bmatrix}$$
$$\bar{u}_{0}(u_{t}) & & \\ \bar{a}_{n-2}(u_{t}) & & \\ \bar{a}_{n-1}(u_{t}) \end{bmatrix} \qquad \bar{B}(u_{t}) = \begin{bmatrix} \bar{b}_{0}(u_{t}) \\ \vdots \\ \bar{b}_{n-2}(u_{t}) \\ \bar{b}_{n-1}(u_{t}) \end{bmatrix}$$

B`MOJO has a non-diagonal input-dependent dynamics, more expressive than Mamba.

B'MOJO's Associative Recall

Innovation Selection (Adaptive compression)

 $M_t := [v]$ **B'MOJO-F's** memory is:

Fading State Last K-tokens

Problem: Fading memory access to older information (through the fading state).

Idea: Store in the eidetic memory tokens that the state cannot easily predict (adaptive compression).

$$M_{t} \leftarrow \begin{cases} M_{t-1} \cup \{u_{t}, \epsilon_{t}\} & \text{if } \epsilon_{t} > \min_{\epsilon \in M_{t-1}}(\epsilon) \\ M_{t-1} & \text{otherwise} \end{cases}$$

where

B'MOJO's memory is:

 $M_t := |u_{i_1}, \ldots$

 $\epsilon_t :=$

Eidetic Memory

$$x_{-\infty}^t u_{t-K-1}, \ldots, u_{t-K}$$

$$\hat{y}_t(M_t) - y_t ||^2$$

$$\ldots, \mathcal{U}_{i_M}, x_{-\infty}^t \mathcal{U}_{t-K-1}, \ldots, \mathcal{U}_{t-K}$$

Connection with Online Kernel Regression

Idea: Online update of the set of basis functions (kernel sections) $K(\cdot, x_i)$ when the prediction residual exceeds a threshold.

Figure 1: Visualisation of the online approximation of the untractable posterior process. The resulting approximate process from previous iteration is used as prior for the next one.

L. Csató and M. Opper, "Sparse Online Gaussian Processes", 2002

B'MOJO's Minimal Realization

B'MOJO summary

B'MOJO's state can be dynamically allocated as required by the a priori unknown complexity of the observations

We augment B'MOJO's state with an eidetic memory implemented with shifting registers similar to Sliding Window Attention but based on an *Innovation Test (à la Box-Ljung*) rather than recency.

One problem...

Can we further extend the selection span?

Luca Zancato[‡] Benjamin Bowman[‡] Stefano Soatto[‡] Wei Xia[‡] Aditya Golatkar[‡] [†]UCLA [‡]AWS AI Labs

Elvis Nunez^{†*} elvis.nunez@ucla.edu, {zancato, bowmaben, agolatka, wxia, soattos}@amazon.com

Abstract

The 'state' of State Space Models (SSMs) represents their memory, which fades exponentially over an unbounded span. By contrast, Attention-based models have 'eidetic' (i.e., verbatim, or photographic) memory over a finite span (context size). Hybrid architectures combine State Space layers with Attention, but still cannot recall the distant past and can access only the most recent tokens eidetically. Unlike current methods of combining SSM and Attention layers, we allow the state to be allocated based on relevancy

Expansion Span: Combining Fading Memory and Retrieval in Hybrid State Space Models

1. Introduction

State Space Models are able to process sequences with an unbounded number of tokens by maintaining a fixed-size state. However, this state is lossy and information about early tokens 'fades' as more inputs are processed. In contrast, Transformer models have a state determined by the number of tokens in their input sequence and are able to access information from all past tokens in their context 'eidetically.' However, they do so at the cost of extra compute and memory. Recent Hybrid models [8, 12, 38] augment SSMs with Attention layers in an effort to counteract SSMs'

Can we further extend the selection span?

Question: Can we dynamically expand B'MOJO's Eidetic memory up to HW limitation?

We propose a Sparse Attention implementation (called Span-Expanded Attention) for Hybrid models.

Span-Expanded Attention

DeepSeek's Native Sparse Attention

Native Sparse Attention: Hardware-Aligned and Natively **Trainable Sparse Attention**

Jingyang Yuan^{*1,2}, Huazuo Gao¹, Damai Dai¹, Junyu Luo², Liang Zhao¹, Zhengyan Zhang¹, Zhenda Xie¹, Y. X. Wei¹, Lean Wang¹, Zhiping Xiao³, Yuqing Wang¹, Chong Ruan¹, Ming Zhang², Wenfeng Liang¹, Wangding Zeng¹

¹DeepSeek-AI ²Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University, PKU-Anker LLM Lab ³University of Washington {yuanjy, mzhang_cs}@pku.edu.cn, {zengwangding, wenfeng.liang}@deepseek.com

Long-context modeling is crucial for next-generation language models, yet the high compu-

eb 2025 **F** 27

Abstract

Expansion Span vs DeepSeek's Native Sparse Attention

Figure 2 | Overview of NSA's architecture.

J.Yuan et al., "Native Sparse Attention: Hardware-Aligned and Natively Trainable Sparse Attention", 2025 February

Expansion Span vs DeepSeek's Native Sparse Attention Ours NSA $\in \mathbb{R}^{S \times d_{\text{model}}}$ F $\tilde{K}_{t}^{\text{cmp}} = f_{K}^{\text{cmp}}(\mathbf{k}_{:t}) = \left\{ \varphi(\mathbf{k}_{id+1:id+l}) \left| 1 \leq i \leq \left| \frac{t-l}{d} \right| \right\}$ 3.6 $\mathbf{p}_t^{\text{cmp}} = \text{Softmax}\left(\mathbf{q}_t^T \tilde{K}_t^{\text{cmp}}\right)$ \mathbb{R}^{U} $I_t = \{i \mid \operatorname{rank}(\mathbf{p}_t^{\operatorname{slc}'}[i]) \leq n\}$ $\tilde{K} = \text{Concatenate}(K_{\phi_i(U)_1}^{\text{Mem}}, \dots, K_{\phi_i(U)_k}^{\text{Mem}}, K_i)$ $\tilde{K}_t^{\text{slc}} = \text{Cat}\left[\{\mathbf{k}_{il'+1:(i+1)l'} | i \in \mathcal{I}_t\}\right]$ $\tilde{V} = \text{Concatenate}(V_{\phi_i(U)_1}^{\text{Mem}}, \dots, V_{\phi_i(U)_k}^{\text{Mem}}, V_i)$ $\mathbf{o}_t^* = \sum g_t^c \cdot \operatorname{Attn}(\mathbf{q}_t, \tilde{K}_t^c, \tilde{V}_t^c)$ $c \in C$ (T) SE-Attn $(\tilde{K}_t^{\text{cmp}}, \tilde{V}_t^{\text{cmp}}; \tilde{K}_t^{\text{slc}}, \tilde{V}_t^{\text{slc}}; \text{ and } \tilde{K}_t^{\text{win}}, \tilde{V}_t^{\text{win}})$

KV Compression

$$\begin{aligned} \mathbf{A}_{j}^{\text{Mem}} &= \operatorname{softmax}\left(\frac{Q_{j}^{\text{Mem}}(K_{j}^{\text{Mem}})^{T}}{\sqrt{d_{\text{model}}}}\right)V_{j}^{\text{Mem}} \in \\ c_{j} &= \frac{1}{S}\sum_{t=1}^{S}(A_{j}^{\text{Mem}})_{t} \in \mathbb{R}^{d_{\text{model}}} \end{aligned}$$

Importance Scores

$$R_{ij} = \sum_{i=1}^{M} (Q_i c_j)_t$$
$$\tilde{R}_i = \operatorname{softmax} \left(\frac{1}{\sqrt{d_{\text{model}}}} (R_i + \mathcal{M}_i) \right) \in \mathbb{R}$$

Rank and Retrieve

Attention

$$A_i^{\text{SE-Attn}} = Attention(Q_i, \tilde{K}_i, \tilde{V}_i)$$

$$o^{\text{SE-Attn}} = \text{Concatenate}(A_1^{\text{SE-Attn}}, A_2^{\text{SE-Attn}}, \dots, A_2^{\text{SE-Attn}})$$

Hardware aware implementation

Efficient chunked implementations

 $O(N^2)$ memory reads, 2 for loops

Mamba/Linear Attention

O(N) memory reads, 1 for loop

Can we avoid costly tiles if they don't add new info?

B'MOJO-F (causal lossy compression)

O(N) memory reads, 2 for loops (smaller than FlashAttention)

B'MOJO (causal semi-lossy compression)

Experimental Results

B'MOJO's in-context associative recall: MQAR

MQAR Input: "AIB3C2E5"

B'MOJO's Eidetic memory stores key-values pairs for future recall!

Query: "A ? E ? C?" Expected output: "I 5 2"

B'MOJO's scaling laws

B'MOJO language modeling scaling law. B'MOJO exhibits a non-saturating scaling law.

Zero shot evaluation

		Pre-training			Short Co	ontext (acc \uparrow)			
		Log-Perplexity	LAMBADA [34]	HellaSwag [51]	PIQA [4]	ARC-E [8]	ARC-C [8]	WinoGrande [36]	Avg.
	Mistral (Full-Attention)	2.56	31.6	33.8	64.0	44.9	23.5	50.4	41.4
V	Mamba (SSM)	2.62	31.4	33.4	63.5	45.0	22.3	51.7	41.2
NO.	Hybrid (Sliding Attention + SSM)	2.69	26.3	31.3	61.1	42.7	22.4	51.9	39.3
37	BMoJo (Fading)	2.68	29.6	33.2	63.7	43.1	23.0	51.8	40.7
	BMoJo (Fading + Eidetic)	2.67	28.6	33.3	63.9	44.3	22.1	50.7	40.5
1.4B	Mistral (Full-Attention)	2.27	50.1	50.7	70.4	58.2	27.5	54.4	51.9
	Mamba (SSM)	2.37	43.9	45.0	70.3	52.4	28.0	51.9	48.6
	Hybrid (Sliding Attention + SSM)	2.42	37.6	38.8	66.1	48.4	25.4	52.6	44.8
	BMoJo (Fading)	2.27	45.4	46.0	70.0	52.3	26.6	53.3	48.9
	BMoJo (Fading + Eidetic)	2.26	44.8	46.8	69.9	54.7	26.6	52.1	49.1

Zero-shot evaluation. B'MOJO outperforms our pre-trained Mamba and Hybrid models on commonsense reasoning and question-answering.

B'MOJO's length extrapolation

Length generalization. B'MOJO generalizes to longer sequences at inference time (up to 4x the ones seen during training). B'MOJO does not need positional embeddings!

Context Length	Model	S-NIAH	MK-NIAH	MV-NIAH	MQ-NIAH	A
2048	Transformer Mamba B'MOJO-F B'MOJO	100 100 90	95 32 36 45	62 29 35 37	61 28 31 33	
4096	Transformer Mamba B'MOJO-F B'MOJO	90 0 9 10 22	43 0 12 16 21	0 5 5 17	0 7 8 17	

Length generalization on RULER. We trained our models on 2k context length and evaluated on RULER up to 4k sequences.

Span-Expanded Attention long context results

Attention	Eval C	ontext S	Size (PG-1	Long Context Tas			
Attention	2048	8192	16384	32768	SWDE	SQA	SNQ
Non-fine-tuned	10.72	14.99	19.35	26.37	85.60	15.18	3.65
Full-Attn	10.99	10.28	10.39	11.14	85.24	26.99	19.7
SW-Attn	10.98	10.80	11.82	13.45	84.61	24.85	15.4
S^2 -Attn	10.87	12.89	14.67	16.37	86.41	17.44	8.53
SE-Attn	10.99	10.45	11.14	12.64	85.96	26.70	18.0

SE-Attention on long context. SE-Attention compares favorably with Full Attention on long context benchmarks (and length extrapolates on PG-19).

B'MOJO's Hardware Efficient Implementation

Time in ms to process sequences of 2k tokens. B'MOJO is faster than other efficient implementations of Mamba and Transformers at all scales.

s reserved

Span-Expanded Attention's efficiency

Runtime

Peak GPU Memory

While increasing peak memory usage by 15/20% compared to Full Attention/SWA Span-Expanded Attention is up to 5x faster than FlashAttention.

Memory/Time Trade-off

Summary

Realization of Memory hierarchies in Modern Sequence Models

Proposed B'MOJO an unified sequence layer that generalizes modern Hybrid models (SSMs + Attention)

B'MOJO has non-diagonal and input dependent recurrence (more expressive than Attention/Mamba)

Complemented efficient fading memory with: Causal Innovation Selection Mechanism

Span-Expanded Attention, a Native-RAG method for Hybrid models

B'MOJO: Hybrid State Space Realizations of Foundation Models with Eidetic and Fading Memory

Luca Zancato* Arju		Seshadri Yonatan E		Dukler Aditya Golatkar		ar	Yantao Shen	
Benjamin Bowman		Matthew Trager A		Alessa	Alessandro Achille		Stefano Soatto	
AWS AI Labs								

MARCONI: PREFIX CACHING FOR THE ERA OF HYBRID LLMS

Rui Pan^{1*} Zhuang Wang² Zhen Jia² Can Karakus² Luca Zancato² Tri Dao¹ Yida Wang² Ravi Netravali¹

Expansion Span: Combining Fading Memory and Retrieval in Hybrid State Space Models

Elvis Nunez^{†*} Luca Zancato[‡] Aditya Golatkar[‡] Wei Xia[‡]

Benjamin Bowman[‡] Stefano Soatto[‡]

[†]UCLA [‡]AWS AI Labs

elvis.nunez@ucla.edu, {zancato, bowmaben, agolatka, wxia, soattos}@amazon.com

Abstract

The 'state' of State Space Models (SSMs) represents their memory, which fades exponentially over an unbounded span. By contrast, Attention-based models have 'eidetic'

1. Introduction

State Space Models are able to process sequences with an unbounded number of tokens by maintaining a fixed-size state. However, this state is lossy and information about early tokens 'fades' as more inputs are processed. In con-

If you are interested in Speculative Decoding efficient inference with Hybrid models

Ihanks

References

L. Zancato et al., "B'MOJO: Hybrid State Space Realizations of Foundation Models with Eidetic and Fading Memory", NeurIPS 2024 E. Nunez et al., "Expansion Span: Combining Fading Memory and Retrieval in Hybrid State Space Models", arXiv:2412.13328 R. Pan et al., "Marconi: Prefix caching for the era of hybrid Ilms", MLSys2025 Y. Wu et al., "Snakes and Ladders: Accelerating SSM Inference with Speculative Decoding", NeurIPS 2025 (Efficient NLP Workshop) TY Liu et al., "PICASO: Permutation-Invariant Context Composition with State Space Models", ICLR 2025 S. Soatto et al., "Taming ai bots: Controllability of neural states in large language models", arXiv:2305.18449 L. Zancato et al., "Train/test-time adaptation with retrieval", CVPR 2023 TY Liu et al., "Meaning representations from trajectories in autoregressive models", ICLR 2024 R.Waleffe et al., "An Empirical Study of Mamba-based Language Models", arXiv:2406.07887 L. Csató and M. Opper, "Sparse Online Gaussian Processes", 2002 DeepSeek-Al Team, "DeepSeek-RI: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning", arXiv:2501.12948 J.Yuan et al., "Native Sparse Attention: Hardware-Aligned and Natively Trainable Sparse Attention", arXiv:2502.11089v1 aws

