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They who forget the pasta are bound to reheat it.
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Memory for sequence models
Processing long sequences: Modern long context 
models have nominal support for sequences of length 
128k-1M tokens.

Reasoning: Better memory means better exploration/
more consistent reasoning traces.

Source: https://huggingface.co/spaces/ArtificialAnalysis/LLM-Performance-Leaderboard
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Memory realizations for sequence models

ut+1

Present
FuturePast

u1 u2 . . .

Easier said than done! We typically don’t know the complexity of the data generation mechanism at the outset.

State: Function of the past that makes the future conditionally independent of the past

P(ut+1 |xt) = P(ut+1 |ut
−∞)

ut
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Benefit of better memory/state

Benefits for long context

Sequence Length

M
em

or
y/

FL
O

Ps Attention

Idea: On verifiable domains we know we can filter 
Best-of-N and learn to prefer successful generations.

Benefits for Reasoning

DeepSeek-AI Team, “DeepSeek-R1”, 2025

Better memory  More effective and cheaper long contexts→
Reduce reliance on ad-hoc “context editing/
cleaning” heuristics

                       →
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Benefit of better memory/state

Idea: On verifiable domains we know we can filter 
Best-of-N and learn to prefer successful generations.

Cons: Throw spaghetti on the wall an hope they stick. 
Computationally VERY inefficient.

Sequence Length

M
em

or
y/

FL
O

Ps Attention

Benefits for Reasoning

Better memory  Can increase “N” in Best-of-N→
More scalable inference time compute                       →

Better memory  More effective and cheaper long contexts→
Reduce reliance on ad-hoc “context editing/
cleaning” heuristics

                       →

Benefits for long context
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Goal: build HW-aware Memory layers

Attention
xN

Transformer

MLP

Linear Attention

xL

Hybrid Models (Jamba, Zamba, Samba, Griffin, …)

MLP

Attention

MLP

xD

How to build the model’s memory? What to keep? What to discard?   Realization Theory→

B’MOJO
xN

B’MOJO Architecture

MLP
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Eidetic vs Fading Memory
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[1] R. Waleffe et al., “An Empirical Study of Mamba-based Language Models”

(a) (b) (c)

Figure 3: Evaluation results for pure SSM and Transformer models (trained for 1.1T tokens) on the
Phonebook task illustrated in Figure 2b. (a) On the standard Phonebook task, Transformers are
capable of in-context learning and answering questions that require copying from the input, but SSM
models struggle with this task. (b) In the standard Phonebook setting (i.e., (a)), SSM models exhibit
fuzzy memory—while they are unable to correctly predict the phone number, they predict phone
numbers that share multiple digits (in the right locations) with the correct answer (see Section 3.3.3).
(c) On the Reversed Phonebook formulation, even when notified at the beginning of the context which
phone number they will be asked to recall, SSM models still lag behind Transformer models.

example question answer pairs before the actual question used for testing. For each trial, we randomly
generate names and phone numbers to create the phone book and randomly select which names are
used for the two examples and the final query. Accuracy on this task is then measured by whether the
model generates the correct phone number or not.

We vary the length of the phone book (the number of (name, phone number) pairs) and plot the
accuracy for each phone book length averaged over 20 different random initializations in Figure 3a. The
8B Transformer model can respond correctly with near 100% accuracy for phone book lengths up to its
pretraining context length (4096). In contrast, both Mamba and Mamba-2 models begin to respond
incorrectly for input sequence lengths beyond approximately 500 tokens. In contrast to MMLU, this
behavior persists for Mamba-2 even when training for 3.5T tokens (Figure 7a).

A closer look at the SSM model predictions shows that while they cannot perfectly recall the correct
phone number, these models have compressed information about each phone book entry into their
running states—we show in Figure 3b the average number of correct tokens predicted by Mamba and
Mamba-2 on Phonebook by comparing the predicted answer to the true answer. Figure 3b shows that
pure SSM-based models have fuzzy memory. That is, while they cannot predict the phone number
exactly, they do generally respond with phone numbers that are similar to the correct answer.

Finally, we evaluate whether changing the Phonebook prompt allows for SSM models to achieve better
results. In particular, we prompt the model with the name of the person whose phone number it will
be asked to recall before showing it the phone book (the Reversed formulation in Figure 2b). Figure 3c
shows the results of the 8B Mamba, Mamab-2, and Transformer models in this modified Phonebook
setting. Interestingly, while the SSM models achieve better accuracy as a function of phone book
length using this prompt, the accuracy still degrades for phone books with lengths shorter than 4096
(the sequence length used for pretraining). Even with the modified Phonebook prompt, it remains
challenging for the SSM to decide which information to store exactly and which information to forget
on this task. We hypothesize that finetuning Mamba and Mamba-2 on the Phonebook task would lead
to improved accuracy.

3.3.4 Takeaway

Our experiments training 8B-parameter Mamba and Mamba-2 models showed that while these models
achieve comparable or better accuracy than Transformers on many standard natural language modeling
tasks, they achieve lower accuracy on others. In particular, we identified MMLU (with smaller token
horizons) and Phonebook as challenging tasks for pure SSM-based models and hypothesize that this is
because these tasks require in-context learning, information routing between tokens, and copying from
the context.
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From [1]

1. Attention: Perfect recall, good long context performance, high compute

2. SSMs: Low recall, fading memory, low cost
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B’MOJO’s key ideas
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xt−K
−∞

Summary of the remote past

Fading Memory

uii, ui2, . . . , uiM

Most informative past 

Eidetic Memory

u0 u1 u2 . . . ut−K ut−K+1 . . . ut

Most recent past
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B’MOJO’s Associative Recall
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Tokens

Mamba

Tokens

Attention

Tokens

B’MOJO

Fading MemoryEidetic Memory (Retrieved)
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Stochastic Realization Problem
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Idea: Find a dynamical model  and its state such that it generates a sequence of observations  and 
future continuations.

Σ ut
1

Problem: Even restricting to LTI systems there exist infinitely many realizations of given measurements ut
1

Thm: Any given data process has not a unique realization, but an equivalence class of models that realize it.

Σ1

Σ3
Σ4

Σ5

Σ2

Σ1 ≡ Σ2
Σ1 ≠ Σ3
Σ1 ≠ Σ4

However, Canonical Realizations are representative of each equivalence class! There are many canonical 
forms: Observable, Controllable, Minimal, Balanced…
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Canonical Realizations

12

              A =
0 1

⋱
1

a0 a1 … an−1

B =

0
⋮
0
1

C = [c0, c1, …, cn−1]               A =

0 a0

1 a1
⋱

1 an−1

B =

b0

b1
⋮

bn−1

C = [0,…,0,1]

Controllable Canonical From Observable Canonical From

Both have poor numerical properties and are not necessarily minimal (least # of FLOPs).

Minimal Canonical Form (smallest possible state)
Obtained by dropping the non-controllable and non-observable subspace.

Balanced Canonical Form

Obtained by equalizing the energy required to control and observe the state.

Σ = {xt+1 = Axt + But

yt = Cxt
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Canonical Realizations
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              A =
0 1

⋱
1

0 0 … 0

B =

0
⋮
0
1

C = [c0, c1, …, cn−1]

Nilpotent Model (in Controllable Canonical Form)

Using an input dependent non-linear readout function ( ) we get Causal Attentionsoftmax

All poles in  are equal to zero.A

Fading Memory Model

              A =

a0
⋱

an−2
an−1

B =

b0
⋮

bn−2

bn−1

C = [c0, c1, …, cn−1] Poles of A < 1

Thm: Differently from Fading memory systems, Nilpotent systems are not diagonalizable.
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Modern Realizations (Attention/SSMs)
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Causal Attention

Attention only has short term eidetic memory that is deadbeat in N steps.

AATT =
0 I

⋱
I
0

; BATT =

0
⋮
0

[kt
vt]

{xt+1 = AATTxt + BATTut

yt = softmax(ut, xt)

SSMs (e.g Mamba or Linear Attention variants)

       Ā(ut) =

ā0(ut)
⋱

ān−2(ut)
ān−1(ut)

B̄(ut) =

b̄0(ut)
⋮

b̄n−2(ut)
b̄n−1(ut)

C̄(ut) = [c0(ut), c1(ut), …, cn−1(ut)]{
xt+1 = Ā(ut)xt + B̄(ut)ut

yt = C̄(ut)xt

Only has fading memory with decoupled dynamics (cannot retain information indefinitely).
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B’MOJO’s realization
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Idea: B’MOJO layers generalize Nilpotent dynamics (of AR Transformers) and fading diagonal dynamics (of 
Mamba/Linear Attention).

{xt+1 = A(ut)xt + B(ut)ut

yt = softmax(ut, xt)
              A(ut) =

0 1
⋱

1
a0(ut) a1(ut) … an−1(ut)

B =

0
⋮
0

b(ut)

Note: B’MOJO has a non-diagonal input dependent dynamics that realizes any dynamical layer (similar to 
the Hammerstein-Wiener model in the Control literature).

B’MOJO
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B’MOJO generalizes Transformers
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Idea: B’MOJO layers generalize Nilpotent dynamics (of AR Transformers) and fading diagonal dynamics (of 
Mamba/Linear Attention).

              A(ut) =

0 1
⋱

1
a0(ut) a1(ut) … an−1(ut)

B =

0
⋮
0

b(ut)

B’MOJO

{xt+1 = A(ut)xt + B(ut)ut

yt = softmax(ut, xt)

AR Transformers {zt+1 = AATTzt + BATT(ut)
xt = softmax(ut, zt)

Attention Layer

Set last row to zero

AATT =
0 I

⋱
I

0 0 . . . 0

; BATT =

0
⋮
0

[kt
vt]

Row set to zero

B’MOJO
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B’MOJO is strictly more expressive than SSMs
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Idea: B’MOJO layers generalize Nilpotent dynamics (of AR Transformers) and fading diagonal dynamics (of 
Mamba/Linear Attention).

              A(ut) =

0 1
⋱

1
a0(ut) a1(ut) … an−1(ut)

B =

0
⋮
0

b(ut)

B’MOJO

AR Transformers

Mamba

Mamba
B`MOJO has a non-diagonal input-dependent dynamics, more expressive than Mamba.  

              Ā(ut) =

ā0(ut)
⋱

ān−2(ut)
ān−1(ut)

B̄(ut) =

b̄0(ut)
⋮

b̄n−2(ut)
b̄n−1(ut)

{xt+1 = A(ut)xt + B(ut)ut

yt = softmax(ut, xt)

B’MOJO
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B’MOJO’s Associative Recall
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Tokens

Mamba

Tokens

Attention

Tokens

B’MOJO

Fading MemoryEidetic Memory (Retrieved)

Up to now  B’MOJO-F→
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Innovation Selection (Adaptive compression)
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Idea: Store in the eidetic memory tokens that the state cannot easily predict (adaptive compression).

B’MOJO-F’s memory is: Mt := [xt
−∞, ut−K−1, . . . , ut−K]

Problem: Fading memory access to older information (through the fading state).

Fading State Last K-tokens

Mt ← {
Mt−1 ∪ {ut, ϵt} if ϵt > minϵ∈Mt−1

(ϵ)
Mt−1 otherwise

B’MOJO’s memory is:

where ϵt := | | ̂yt(Mt) − yt | |2

Mt := [ui1, . . . , uiM, xt
−∞, ut−K−1, . . . , ut−K]

Eidetic Memory
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Connection with Online Kernel Regression

20

Idea: Online update of the set of basis functions (kernel sections)  when the prediction residual 
exceeds a threshold. 

K( ⋅ , xi)

L. Csató and M. Opper, “Sparse Online Gaussian Processes”, 2002
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B’MOJO’s Minimal Realization

21

SSM

Most informative remote past Summary of the 
remote past

Recent past

xt−K
−∞

xt−K
−∞

ut−K+1, . . . , utu−∞, . . . , ut−K

Sliding Window Attention

uii, ui2, . . . , uiM
Innovation 
Selection



© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.
/4322

B’MOJO summary

B’MOJO’s state can be dynamically allocated as required by the a priori unknown complexity of the observations

Tokens

B’MOJO

Fading MemoryEidetic Memory (Retrieved)

We augment B’MOJO’s state with an eidetic memory implemented with shifting registers similar to Sliding 
Window Attention but based on an Innovation Test (à la Box-Ljung) rather than recency.
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One problem...

Tokens

B’MOJO

Fading MemoryEidetic Memory (Retrieved)Query A

Tokens

B’MOJO

Fading MemoryEidetic Memory (Retrieved)Query B

Different positions
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Can we further extend the selection span?
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Can we further extend the selection span?
Question: Can we dynamically expand B’MOJO’s Eidetic memory up to HW limitation?

Most informative 
remote past

Summary of the 
remote past

Recent past

xt−K
−∞

ut−K+1, . . . , ut

Sliding Window Attention

uii, ui2, . . . , uiM

We propose a Sparse Attention implementation (called Span-Expanded Attention) for Hybrid models.

uji(ut), uj2(ut), . . . , ujM(ut)

Selected by relevancy w.r.t. 
current query, not recency!
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Span-Expanded Attention

Search and Retrieve

QueryGet top k chunksE 1, E 2, …, E N

Input Chunk 3 Input Chunk 12 Input Chunk 2025

QueryAttention

Input Chunk 1 Input Chunk 2 … Input Chunk N

fATTN fATTN fATTNfATTN

E N Organize MemoryMemory 
embeddings E 2E 1 …
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DeepSeek’s Native Sparse Attention
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Expansion Span vs DeepSeek’s Native Sparse Attention

J. Yuan et al., “Native Sparse Attention: Hardware-Aligned and Natively Trainable Sparse Attention”, 2025 February
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Expansion Span vs DeepSeek’s Native Sparse Attention
Ours NSA

KV Compression

Importance Scores

Rank and Retrieve

Attention
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Hardware aware implementation
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Efficient chunked implementations

A_11 Q_1 A_11 Q_1

A_22A_21 Q_2 A_22S_1 Q_2

A_33A_31 A_32 Q_3 A_33 Q_3S_2

 memory reads, 2 for loops O(N2)  memory reads, 1 for loop O(N)

FlashAttention Mamba/Linear Attention 
QueryAttention Matrix
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B’MOJO-F (causal lossy compression)

A_11 Q_1

Can we avoid costly tiles if they don’t add new info?

B’MOJO (causal semi-lossy compression)

A_11 Q_1

A_22A_21 Q_2 A_22A_21 Q_2

A_33A_32 Q_3X_2

A_44A_43 Q_4X_3E_42

Only if current block 
is “interesting”

 memory reads, 2 for loops (smaller than FlashAttention)O(N)

A_44A_43 Q_4X_3

A_33A_32 Q_3X_2
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Experimental Results
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B’MOJO’s in-context associative recall: MQAR

34

MQAR Input:  “A 1   B 3   C 2   E 5 ” Query: “A ?   E ?   C?” Expected output: “1   5   2” 

B’MOJO’s Eidetic memory stores key-values pairs for future recall!
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B’MOJO’s scaling laws
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B’MOJO language modeling scaling law. B’MOJO exhibits a non-saturating scaling law. 



© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.
/43

Zero shot evaluation

36

Zero-shot evaluation. B’MOJO outperforms our pre-trained Mamba and Hybrid models on common-
sense reasoning and question-answering.
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B’MOJO’s length extrapolation

37

Length generalization. B’MOJO generalizes to longer sequences 
at inference time (up to 4x the ones seen during training). B’MOJO 
does not need positional embeddings!

Length generalization on RULER. We trained our models on 2k 
context length and evaluated on RULER up to 4k sequences.
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Span-Expanded Attention long context results

38

SE-Attention on long context. SE-Attention compares favorably with Full Attention on long context benchmarks (and length extrapolates on PG-19).
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B’MOJO’s Hardware Efficient Implementation

39

Time in ms to process sequences of 2k tokens. B’MOJO is faster than other efficient implementations of Mamba and Transformers at all scales.
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Span-Expanded Attention’s efficiency

40

More Memory Efficient

Fa
st

er

Runtime Peak GPU Memory Memory/Time Trade-off

While increasing peak memory usage by15/20% compared to Full Attention/SWA Span-Expanded Attention is up to 5x faster than FlashAttention.
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Summary

41

Realization of Memory hierarchies in Modern Sequence Models

Proposed B’MOJO an unified sequence layer that generalizes modern Hybrid models (SSMs + Attention) 

Tokens

B’MOJO

Fading MemoryEidetic Memory (Retrieved)

B’MOJO has non-diagonal and input dependent recurrence (more expressive than Attention/Mamba)

Complemented efficient fading memory with:
Causal Innovation Selection Mechanism
Span-Expanded Attention, a Native-RAG method for Hybrid models
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If you are interested in Speculative Decoding efficient 
inference with Hybrid models

Thanks!
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